A Fuzzy Logic Module to Estimate a Driver’s Fuel Consumption for Reality-Enhanced Serious Games

Author:

Massoud Rana,Poslad Stefan,Bellotti Francesco,Berta Riccardo,Mehran Kamyar,De Gloria Alessandro

Abstract

Reality-enhanced gaming is an emerging serious game genre, that could contextualize a game within its real instruction-target environment. A key module for such games is the evaluator, that senses a user performance and provides consequent input to the game. In this project, we have explored an application in the automotive field, estimating driver performance in terms of fuel consumption, based on three key vehicular signals, that are directly controllable by the driver: throttle position sensor (TPS), engine rotation speed (RPM) and car speed. We focused on Fuzzy Logic, given its ability to embody expert knowledge and deal with incomplete information availability. The fuzzy models – that we iteratively defined based on literature expertise and data analysis – can be easily plugged into a reality-enhanced gaming architecture. We studied four models with all the possible combinations of the chosen variables (TPS and RPM; RPM and speed; TPS and speed; TPS, speed and RPM). Input data were taken from the enviroCar database, and our fuel consumption predictions compared with their estimated values. Results indicate that the model with the three inputs outperforms the other models giving a higher coefficient of determination (R2), and lower error. Our study also shows that RPM is the most important fuel consumption predictor, followed by TPS and speed.

Publisher

Serious Games Society

Subject

General Medicine

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Implementing Deep Reinforcement Learning (DRL)-based Driving Styles for Non-Player Vehicles;International Journal of Serious Games;2023-11-25

2. Alessandro De Gloria;International Journal of Serious Games;2023-04-01

3. EcoGO: Combining eco-feedback and gamification to improve the sustainability of driving style;Proceedings of the 2022 International Conference on Advanced Visual Interfaces;2022-06-06

4. A Machine Learning Based Fuel Consumption Saving Method with Time and Environment Dependency Aware Management;The 2022 5th International Conference on Electronics, Communications and Control Engineering;2022-03-25

5. Player Modeling and Adaptation Methods Within Adaptive Serious Games;IEEE Transactions on Computational Social Systems;2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3