Low Stress Polycrystalline SiC Thin Films Suitable for MEMS Applications

Author:

Fu Xiao-An,Dunning Jeremy L.,Mehregany Mehran,Zorman Christian A.

Abstract

This paper details the development of low residual stress and low stress gradient unintentionally doped polycrystalline SiC (poly-SiC) thin films. The films were deposited in a large-volume, low-pressure chemical vapor deposition (LPCVD) furnace on 100 mm-diameter silicon (Si) wafers using dichlorosilane (SiH2Cl2) and acetylene (C2H2) as precursors. We found that the flow rate of SiH2Cl2 could be used to control the residual film stress in the as-deposited films. Wafer curvature measurements for ∼2 μm-thick films indicated that tensile stress ranging from 4 to 55 MPa across a 25 wafer boat had been achieved. A variety of micromachined structures including lateral resonant structures, stress pointers and cantilevers were fabricated for characterization of the deposited SiC films. The average Young’s modulus was found to be 403 GPa. Residual stress measurements were consistent with those obtained using a wafer curvature technique. Interferometric measurements of cantilever beams indicated stress gradients with an upper bound of 52 MPa/μm for ∼2 μm-thick films with tensile stress less than 55 MPa.

Publisher

The Electrochemical Society

Subject

Materials Chemistry,Electrochemistry,Surfaces, Coatings and Films,Condensed Matter Physics,Renewable Energy, Sustainability and the Environment,Electronic, Optical and Magnetic Materials

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3