Electrochemical Detection of H2O2 Using an Activated Glassy Carbon Electrode

Author:

Murugan Preethika,Nagarajan Ramila D.,Sundramoorthy Ashok K.ORCID,Ganapathy Dhanraj,Atchudan Raji,Nallaswamy Deepak,Khosla AjitORCID

Abstract

Hydrogen peroxide (H2O2) is extensively used for sterilization purposes in the food industries and pharmaceuticals as an antimicrobial agent. According to the Food and Agriculture Organization (FAO), the permissible level of H2O2 in milk is in the range of 0.04 to 0.05% w/v, so it has been prohibited to use as a preservative agent. Herein, we reported the electrochemical sensing of H2O2 in milk samples using an activated glassy carbon electrode (AGCE). For this purpose, activation of GCE was carried out in 0.1 M H2SO4 by continuous potential sweeping between −0.7 to 1.8 V for 25 cycles. The AGCE showed a redox peak at -0.18 V in the neutral medium corresponding to the quinone functional groups present on the electrode surface. AGCE was studied in (pH 7.4) 0.1 M PBS for the electro-catalysis of H2O2. The surface of the activated electrode was analysed by Raman spectroscopy and contact angle measurements. In addition, for the activated surface, the contact angle was found to be 85° which indicated the hydrophilic nature of the surface. The different optimization parameters such as (1) effect of electrolyte ions, (2) electrooxidation cycles, and (3) oxidation potential windows were studied to improve the activation process. Finally, AGCE was used to detect H2O2 from 0.1 to 10 mM and the limit of detection (LOD) was found to be 0.053 mM with a linear correlation coefficient (R2) of 0.9633. The selectivity of the sensor towards H2O2 was carried out in the presence of other interferents. The sensitivity of the AGCE sensor was calculated as 17.16 μA mol cm−2. Finally, the commercial application of the sensor was verified by testing it in milk samples with H2O2 in the recovery range of 95%–98%.

Funder

Science and Engineering Research Board

Publisher

The Electrochemical Society

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3