Performance of a PANI/MnO2 Nanocomposite-Based Supercapacitor/Diode Under DC Magnetic Field and Visible and Ultraviolet Photon Irradiation

Author:

Rather Mudasir HussainORCID,Mir Feroz Ahmad,Ahmad Peerzada AjazORCID

Abstract

Polyaniline/Manganese dioxide (PANI/MnO2) nanocomposite has been successfully prepared by in situ polymerization method. The X-ray Diffraction (XRD) data confirm the formation of PANI/MnO2 nanocomposites. Fourier Transform Infrared (FT-IR) spectroscopy confirms the vibrationsdominant by metal oxide and polymer in the complex format. The Scanning Electron Microscope (SEM) shows that these nanocomposites exhibits nano rods like morphologies. The optical properties were studied by UV–visible Spectroscopy and the optical band gaps were estimated to be around 1.62 eV. Also this composite follow indirect allowed transition. Cyclic Voltammetry (CV) of this composites were also studied, and from this data the specific capacitance (Cp), energy density (Ed), power density (Pd) and charge retention were also calculated. Additionally, from CV data, the energy levels such as the highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO) were also determined. A supercapacitor of this understudy material was designed and it’s charging and discharging under different conditions (like under the exposure of different wavelengths of light and various intensities of static magnetic fields)were also studied and explained. The preliminary designed supercapacitor shows good charge retention capacity. The specific capacitance of this capacitor remainsaround 463 Fg−1 at 200 cycles. Besides this, a planner diode of this composite was also fabricated and this diode was tested for current-voltage (IV) characteristics under various conditions like under exposure to photons of various wavelengths and in presence of different static magnetic fields.The various parameters related with this diode were analyzed and studied. The dielectric studies of this material were studied. The current materials could be explored as a good candidate for modern energy storage and optoelectronics applications.

Publisher

The Electrochemical Society

Subject

Electronic, Optical and Magnetic Materials

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3