Low-Resistivity Cobalt and Ruthenium Ultra-Thin Film Deposition Using Bipolar HiPIMS Technique

Author:

Seo MinORCID,Cho Min Kyung,Kang Un Hyeon,Jeon Sin Young,Lim Sang-Ho,Han Seung HeeORCID

Abstract

Owing to the rapid growth of very large-scale integration technology at nanometer scales, cobalt and ruthenium interconnects are being used to solve the high-resistivity copper problem. However, with such interconnects, carbon contamination can occur during chemical vapor deposition and atomic layer deposition. Bipolar (BP) high-power impulse magnetron sputtering (HiPIMS) with a high ionization rate is an excellent vacuum process for depositing low-resistivity thin films. In this study, low-resistivity cobalt, ruthenium, and copper thin films were deposited using BP-HiPIMS, HiPIMS, and direct-current magnetron sputtering (DCMS). The resistivities of the cobalt, ruthenium, and copper thin films (<10 nm) deposited via BP-HiPIMS were 91.5, 75, and 35%, respectively, lower than the resistivities of the same film materials deposited using direct-current MS. To solve the low pass-through flux of cobalt, the target temperature was raised to the Curie temperature (approximately 1100 °C) using a thermal insulation backplate (Ti-6Al-4V), resulting in a resistivity reduction of about 73%. The study provides a novel method for the vacuum deposition of cobalt and ruthenium thin films.

Funder

Korea Institute of Science and Technology

Publisher

The Electrochemical Society

Subject

Electronic, Optical and Magnetic Materials

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3