Role of Molecular Structure on Modulating the Interfacial Dynamics for Shallow Trench Isolation (STI) Chemical Mechanical Planarization (CMP) Applications

Author:

Wortman-Otto Katherine M.ORCID,Linhart Abigail N.ORCID,Dudek Abigail L.ORCID,Sherry Brian M.,Keleher Jason J.ORCID

Abstract

As feature sizes continue to shrink well beyond the 7 nm node, understanding the delicate balance present in the chemical mechanical planarization (CMP) process is of utmost importance. In order to achieve high through-put and defect-free CMP processes it is critical to develop predictive analytical techniques that directly correlate to macroscopic STI CMP performance metrics (i.e. oxide/nitride removal, defectivity, and dishing/erosion). This work employed a suite of techniques to monitor the CeO2 nanoparticle interfacial redox processes in the presence of structurally diverse rate modulating additives. Specifically, utilizing a UV–vis spectroscopic technique, the Ce3+/Ce4+ ratio in the presence of different slurry additives was monitored and proved to directly correlate to removal rate performance (i.e. an increase in Ce3+/Ce4+ ratio shows an increase in rate). This finding coupled with the rate of dissolved O2 evacuation and a modified QCM technique determined the mode of interaction/adsorption which validates that the mechanism of oxide removal does not strictly depend on redox capacity, but also depends on the dynamic O2 equilibrium at the CeO2 nanoparticle surface. It was determined that the modulation of oxide removal was directly related to the distribution of interactions (i.e. steric vs redox) and was highly dependent on the slurry additive functionality.

Publisher

The Electrochemical Society

Subject

Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3