Design of Pentacene Thin-Film Transistor Based Hydrogen Gas Sensor with High-K Dielectric Materials for High Sensitivity

Author:

Thakur Yogesh,Raj BalwinderORCID,Raj Balwant

Abstract

Electrical properties of an organic field-effect transistor were modelled in top gate top contact (TGTC) geometry and H2 gas sensors were designed for increased sensitivity based on the structure. Safety concerns related to hydrogen usage must be addressed; these hazardous characteristics include a wide flammable range (4%–75%) that results in a rapid burning velocity, a low minimum ignition energy (0.017 mJ), a high heat of combustion (143 kJ g−1), and the high diffusivity of hydrogen gas (0.61 cm2 s−1 in the air). These characteristics make it impossible to control hydrogen combustion after a specific time. All simulations were performed in the Silvaco TCAD ATLAS tool. We analysed the driving principle of gas sensors and introduced gas sensing properties in OFET using platinum metal at the gate electrode for H2 gas detection. IOFF, ION, and VTH are sensitivity parameters that alter when the metalwork function of the gate changes with respect to the gas present on it. The designed sensor was analysed for different dielectric materials. Results demonstrate that the increase in sensitivity for OFET-based H2 sensors is 73.4%, 80.7%, 90.5%, and 95.6% when the work function changes by 50, 100, 150, and 200 meV for Pt gate electrodes with an increase in dielectric value of insulating layer from SiO2 (3.9) to La2O3 (27). Results were compared with the In1-xGaxAs CGNWFET-based H2 sensor as the work function varies at 200 meV,the sensitivity enhancement with OFET-based H2 sensors is 8.09%.

Publisher

The Electrochemical Society

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3