Investigating the Semi-Analytical Models of Momentum Relaxation Mean Free Time and Path and Ionization Coefficient of Trilayer Graphene Nanoribbon- Based FETs

Author:

Rahmani MeisamORCID,GhafooriFard Hassan,Ahmadi Mohammad TaghiORCID,Rahmatpour Esmaeil

Abstract

Trilayer graphene nanoribbon as a superlative semiconductor promises potential applications in the diodes, FETs, gas and biosensors. It is a suitable candidate for nanoelectronic applications due to attractive electronic, mechanical, thermoelectric and optoelectronics properties. The aim of the present paper is to analytically investigate the momentum relaxation mean free time and path and also ionization coefficient of trilayer graphene nanoribbon in nanoscale FETs. The models are derived based on energy band structure and calculating the effective mass, carrier velocity and scattering rate. Furthermore, the effects of interlayer potential energies, temperature and potential difference of layers are also taken into account on the modeled parameters. As a result, the obtained results and findings of this research are in rational agreement with published data, in terms of value and trend. The results and figures of merit for the proposed device showed a promising performance for transistor applications.

Publisher

The Electrochemical Society

Subject

Electronic, Optical and Magnetic Materials

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3