Author:
Pourasl Ali H,Ahmadi Mohammad Taghi,Rahmani Meisam,Chin Huei Chaeng,Lim Cheng Siong,Ismail Razali,Tan Michael Loong Peng
Abstract
Abstract
In recent years, carbon nanotubes have received widespread attention as promising carbon-based nanoelectronic devices. Due to their exceptional physical, chemical, and electrical properties, namely a high surface-to-volume ratio, their enhanced electron transfer properties, and their high thermal conductivity, carbon nanotubes can be used effectively as electrochemical sensors. The integration of carbon nanotubes with a functional group provides a good and solid support for the immobilization of enzymes. The determination of glucose levels using biosensors, particularly in the medical diagnostics and food industries, is gaining mass appeal. Glucose biosensors detect the glucose molecule by catalyzing glucose to gluconic acid and hydrogen peroxide in the presence of oxygen. This action provides high accuracy and a quick detection rate. In this paper, a single-wall carbon nanotube field-effect transistor biosensor for glucose detection is analytically modeled. In the proposed model, the glucose concentration is presented as a function of gate voltage. Subsequently, the proposed model is compared with existing experimental data. A good consensus between the model and the experimental data is reported. The simulated data demonstrate that the analytical model can be employed with an electrochemical glucose sensor to predict the behavior of the sensing mechanism in biosensors.
Publisher
Springer Science and Business Media LLC
Subject
Condensed Matter Physics,General Materials Science
Reference37 articles.
1. Wolfbeis OS: Fiber-optic chemical sensors and biosensors. Anal Chem 2008, 80: 4269–4283. 10.1021/ac800473b
2. Diamond D: Principles of Chemical and Biological Sensors. New York: Wiley; 1998.
3. Sandhu A: Glucose sensing: silicon’s sweet spot. Nat Nanotechnol 2007. 10.1038/nnano.2007.2 10.1038/nnano.2007.2
4. Zhu ZG, Garcia-Gancedo L, Chen C, Zhu XR, Xie HQ, Flewitt AJ, Milne WI: Enzyme-free glucose biosensor based on low density CNT forest grown directly on a Si/SiO2 substrate. Sens Act B-Chem 2013, 178: 586–592.
5. Wen Z, Ci S, Li J: Pt nanoparticles inserting in carbon nanotube arrays: nanocomposites for glucose biosensors. J Phys Chem C 2009, 113: 13482–13487. 10.1021/jp902830z
Cited by
58 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献