Construction of Heteroatom-Doped Porous Carbon Architectures for Energy and Sensing Applications

Author:

Suresh Kumar Raju,Arumugam Natarajan,Murugesan Senthil Kumar Sakkarapalayam

Abstract

In this chapter, we have concentrated on the main electrocatalytic oxygen processes, oxygen reduction reaction (ORR) and water splitting oxygen evolution reaction (OER), and biosensors based on porous carbon architectures, which are more important areas of research because of the rise in demand for energy management, supply, and disease diagnosis. Heteroatom-doped carbon hollow spheres are very useful because they have a large surface area, mesoporosity, spherical wall thicknesses, edge plane defect sites, catalytic active sites, and fast heterogeneous electron-transfer rates. These properties are very important for making commercial devices. This chapter provides an overview of hollow carbon nanospheres that are doped with single and double heteroatoms, as well as cobalt oxide. These carbon compounds function as dual catalysts for OER and ORR, as well as an effective electrocatalyst for the oxygen reduction process in both acidic and alkaline media. Electrocatalytically, heteroatom-doped carbon sphere-modified electrodes can simultaneously and specifically identify and determine the analytes, while also validating the target species in real samples. N-doped hollow carbon spheres coated-Co3O4 functioned as an efficient dual-function oxygen electrocatalyst for oxygen evolution and oxygen reduction processes and also as a biosensor for highly effective electrochemical sensing of acetaminophen. A symmetric supercapacitor using dual heteroatom-doped and SBA-15 templated porous carbon was also discussed.

Publisher

IntechOpen

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3