Water Flow Improvement by Pinhole Outlet in Batch-Type Wet Cleaning Bath for Large-Diameter Wafers

Author:

Tsuchida Toko,Takahashi Toshinori,Habuka HitoshiORCID,Goto Akihiro

Abstract

The pinhole water outlet fabricated near the top of bath walls could produce a simple water flow with less water recirculation in the batch-type wet cleaner for 300 mm-diameter silicon wafers. The pinholes having a 2 mm diameter were arranged in three different configurations: (i) the right and left side walls have the pinhole outlets, while the front and back side walls did not, (ii) the distance between the nearest neighbor pinholes was less than 1.5 cm and (iii) the pinhole arrays were at the depth of 3, 4.5 and 6 cm beneath the water surface. The water motion was studied by computational fluid dynamics and visualization, during the wafer operations. When 10 cm of the wafer bottom was immersed in the water, the calculation showed that 90% of the particles, released from the 1 cm depth beneath the water surface, was removed from the bath within 10 s. By observations throughout the sequential wafer operations of dipping, holding and lifting, the blue-colored tracer ink that had been painted at the wafer surface simply went toward the outlet without any considerable recirculation. The range of the water flow rate without causing any recirculation was additionally studied.

Funder

Pre-Tech Co., Ltd.

Publisher

The Electrochemical Society

Subject

Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3