Design and Simulation of Bi-Layer Optimized High K- Dielectric Medium for N-Mosfet with Wild Horse Optimization to Improve Electrical Characteristics

Author:

Pavithra Guru R.ORCID

Abstract

Electronic devices for advanced modern semiconductor based technology, mainly focus on the design regarding lighter, faster and more affordable solutions to meet the specifications of modern digital electronics. Some of the drawbacks for minimizing device size in MOSFET include gate insulator scaling, Short-Channel Effects (SCEs), shallow junction technology and off-state leakage current in MOSFET devices. In addition, the traditional SiO2 as a dielectric material contains restricted maximum capacitance as well as increased tunnel current leakage due to the thickness. Hence, a High-k dielectric is required to replace SiO2 to overcome the mentioned issues. In this model, the N-type MOSFET is designed based on the bi-layer high K-dielectric medium with optimized thickness according to the maximum capacitance and minimum threshold voltage, which are implemented on VLSI based applications such as 6 T SRAM for evaluating the performance. The drain current of HfO2, Al2O3 and HfO2+Si3N4 for 2.5 v drain voltage are 1.87 mA, 1.51 mA and 3.54 mA. Then, the read and write delay of the single and bi-layer MOSFET are 70.84 ps, 82.64 ps, 95.21 ps and 10.24 ps, 15.47 ps, 21.74 ps. Thus, the designed and simulated bi-layer optimized high k- dielectric medium for N-MOSFET with wild horse optimization performs better electrical characteristics than the single layer dielectric medium MOSFET.

Publisher

The Electrochemical Society

Reference22 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3