Charge Compensation Mechanism and Multifunctional Properties of Bi1−xBaxFeO3 (x = 0, 0.05, 0.1) Ceramics

Author:

Sasmal Abhishek,Sen ShrabaneeORCID

Abstract

The charge compensation mechanism of Ba2+ ion doped BiFeO3 (BFO) has been studied here in detail. The most common problem of high leakage current of ceramic BFO was noticeably resolved by significant reduction of charge defects through Ba2+ doping. The leakage current density of Bi1-xBaxFeO3 (x = 0, 0.05, 0.1) was found to be reduced to ∼3.13 × 10−8 A cm−2 for x = 0.1 from a value of 2.26 × 10−4 A cm−2 for x = 0 at an applied field of 500 V cm−1. This reduction of leakage current was caused by the reduction of charge defects which was verified through the X-ray photoelectron spectroscopy (XPS). The dielectric and ferroelectric properties of undoped and Ba2+ doped BFO were also studied here explicitly and correlated with charge compensation mechanism. The structural and vibrational characterization proved the phase pure formation and the presence of metal-oxide bonds. The optical characterization showed the reduction in energy band gap with increased Ba2+ doping in BFO (2.18, 1.71 and 1.56 eV for x = 0, 0.05 and 0.1, respectively). Another common problem of BFO, namely low remanent magnetization, was also significantly resolved through Ba2+ doping in it and the strong antiferromagnetic BFO started showing weak ferromagnetic nature with increased doping concentration.

Funder

Department of Science and Technology, Ministry of Science and Technology, India

Publisher

The Electrochemical Society

Subject

Electronic, Optical and Magnetic Materials

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3