Advantages of AlGaN Tunnel Junction in N-Polar 284 nm Ultraviolet-B Light Emitting Diode

Author:

Rahman Hafeez UrORCID,Ayub Khalid.,Sharif Nawaz,Khan M. Ajmal,Wang Fang,Liu Yuhuai.

Abstract

Smart, low cost and environmentally safe aluminum gallium nitride (AlGaN)-based ultraviolet-B light-emitting diodes (UV-B LEDs) are promising in real-world applications including medical as well as agricultural sciences. Higher efficiency droops, low hole injection efficiency, and high operating voltage are the key problems that AlGaN-based UV-B LEDs are facing. In this work, a smart and clean AlGaN-based UV-B LED at 284 nm emission wavelength has been studied. Here an approach is presented to electrically operate the quantum tunnelling probability by exploiting the transported carriers at the interface of p-AlGaN/n-AlGaN/n++-AlGaN tunnel junction (TJ) with moderate Si and Mg-doping levels and optimized thickness with the help of simulation study. The simulation results show that the Augur recombination rate is successfully suppressed and quite a high radiative recombination rate is achieved in the 284 nm N-polar AlGaN-based TJ UV-B LEDs, which is attributed to the improved hole injection toward the MQWs when compared to C-LED (conventional-LED). It is found that C-LED has a maximum IQE (internal quantum efficiency) of 40% under 200 A cm−2 injection current with an efficiency drop of 15%, while the TJ-LED has a maximum IQE of 93% with an efficiency droop of 0%. In addition, TJ-based AlGaN LED emitted power has been improved by 6 times compared to the C-LED structure. The emitted powers of TJ-LED increase linearly under varying current densities, whereas in the case of C-LED, the emitted power changes nonlinearly under varying current densities. This is attributed to the lower Augur recombination rate in the MQWs of N-AlGaN-based TJ UV-B LED. The operating voltages were reduced from 5.2 V to 4.1 V under 200 mA operation, which is attributed to the thickness and doping optimization in TJ and better selection of relatively lower Al-content in the contact layer. N-polar AlGaN-based TJ is explored for UV-B LEDs and the demonstrated work opens the door to epitaxial growth of high-performance UV emitters in MOCVD and MBE for a plethora of biomedical applications.

Funder

Zhengzhou 1125 Innovation Project

Ningbo Major Project of ‘Science, Technology and Innovation 2025

Key Program for International Joint Research of Henan Province

National Nature Science Foundation of China

National Key Research and Development Program of China

Publisher

The Electrochemical Society

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3