Contact Effect On Twisted Graphene Based Schottky Transistor

Author:

Ahmadi Ramin,Ahmadi Mohammad TaghiORCID

Abstract

Owing to the exceptional electrical properties of different one dimensional (1D) classifications of graphene structure such as graphene nanoribbon (GNR) and twisted graphene (TWG) led to a revolution in nanoelectronic researche and applications. Thus, these materials have been extensively explored in nanoelectronics science and materials. This paper is focused on GNR and TWG junction as metal-semiconductor-metal (MSM) in the form of a transistor. The wave vectors of TWG and GNR based on the geometrical effects are discussed. By considering 1D potential barrier at the junction of TWG as a semiconducting region and GNR as a metallic region, the transmission probability is calculated. Then, the I–V characteristics of GNR-TWG Schottky transistor based on quantum tunneling effect arepresented and discussed, as well. The performance of GNR-TWG Schottky transistor under variation of gate-source voltage, channel length, number of twists, width of GNR, and temperature are investigated. It is concluded that increment in number of twists and width of GNR lead to increasing the drain current and threshold voltage. Finally, comparison study with graphene nanoscroll (GNS) Schottky transistor, trilayer graphene nanoribbon (TGNR) Schottky transistor, and reported experimental data are performed and results represent that GNR-TWG Schottky transistor has larger drain current than these works.

Publisher

The Electrochemical Society

Subject

Electronic, Optical and Magnetic Materials

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3