Analytical Approach to Study Sensing Properties of Graphene Based Gas Sensor

Author:

Hosseingholipourasl AliORCID,Hafizah Syed Ariffin Sharifah,Al-Otaibi Yasser D.,Akbari Elnaz,Hamid Fatimah. KH.,Koloor S. S. R.ORCID,Petrů MichalORCID

Abstract

Over the past years, carbon-based materials and especially graphene, have always been known as one of the most famous and popular materials for sensing applications. Graphene poses outstanding electrical and physical properties that make it favorable to be used as a transducer in the gas sensors structure. Graphene experiences remarkable changes in its physical and electrical properties when exposed to various gas molecules. Therefore, in this study, a set of new analytical models are developed to investigate energy band structure, the density of states (DOS), the velocity of charged carriers and I-V characteristics of the graphene after molecular (CO, NO2, H2O) adsorption. The results show that gas adsorption modulates the energy band structure of the graphene that leads to the variation of the energy bandgap, thus the DOS changes. Consequently, graphene converts to semiconducting material, which affects the graphene conductivity and together with the DOS variation, modulate velocity and I-V characteristics of the graphene. These parameters are important factors that can be implemented as sensing parameters and can be used to analyze and develop new sensors based on graphene material.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3