Abstract
Understanding the single event effects (SEE) sensitivity of microelectronic devices and circuits is essential for long-term mission success in ionizing radiation environments. SEEs occur when a single ionizing particle strikes a device with enough energy to cause anomalous malfunction or even a catastrophic failure event. It is conventionally viewed as an electrical phenomenon, whereas this study investigates the possible role of multi-physics. Specifically, we show that localized mechanical stress in electronic devices significantly impacts the degree of SEE sensitivity. We present a technique that indirectly maps both electrical and mechanical field localization to spatially map SEE sensitivity without any need for radiation test sources. It is demonstrated on the operational amplifier LM124 under both pristine and stressed conditions. To validate our hypothesis, our experimental results are compared with those obtained from the well-established pulsed laser SEE technique. Excellent agreement between these results supports our hypothesis that SEE susceptibility may have fundamental roots in both electrical and mechanical fields. Therefore, the ability to map the localizations in these fields may indirectly map the SEE sensitivity of large area electronics, which is very expensive in time and resources.
Funder
Defense Threat Reduction Agency
Division of Electrical, Communications and Cyber Systems
Publisher
The Electrochemical Society