X-ray Absorption Spectroscopy of Silicon Carbide Thin Films Improved by Nitrogen for All-Silicon Solar Cells

Author:

Khatami ZahraORCID,Bleczewski Lyndia,Neville John J.,Mascher Peter

Abstract

Synchrotron-based experiments in combination with optical measurements were used to explore the potential of a photovoltaic material based on silicon carbonitride (SiCN) thin films, in particular for the use in space solar cells. The large bandgap, SiCN films were fabricated using electron cyclotron resonance plasma-enhanced chemical vapour deposition (ECR-PECVD) followed by low-temperature annealing processes. X-ray absorption near edge structure (XANES) with excitations at the carbon, nitrogen, and silicon K-edges verifies that the presence of nitrogen tends to disrupt Si–C networks. This results in the enhancement of light absorption and bandgap widening, which is desirable for front emitters in all-silicon tandem solar cells. The ternary structure of SiCN allows bandgap engineering and tuning of the light absorption and refractive index through careful design of the composition. XANES showed that the thermal annealing at a medium temperature (500 °C) using N2 ambient promoted the formation of Si–Si and C–N sp2 bonds before disappearing in higher annealing temperatures. In our opinion unlocking the potential of robust SiC mixed with nitrogen in SiCN matrix has appeal in radiation-resistant solar cells, where it can serve as the top emitter layer in all-silicon tandem solar cells and at the same time benefits the antireflection properties.

Funder

New Brunswick Innovation Foundation

Natural Sciences and Engineering Research Council of Canada

Publisher

The Electrochemical Society

Subject

Electronic, Optical and Magnetic Materials

Reference35 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3