Abstract
AbstractA new integrated deposition system taking advantage of magnetron sputtering and electron cyclotron-plasma enhanced chemical vapour deposition (IMS ECR-PECVD) is presented that mitigates the drawbacks of each fabrication system. This tailor-made system provides users with highly homogeneous and pure thin films with less undesired hydrogen and well-controlled rare-earth concentration compared to existing methods of rare-earth doping, such as metalorganic powders, sputtering, and ion implantation. We established the first comprehensive report on the deposition parameters of argon flow and sputtering power to achieve desired rare-earth concentrations in a wide composition range of terbium (Tb) doped-silicon oxide (Tb:SiOx) matrices including silicon-rich (x < 2), oxygen-rich (x > 2), and stoichiometric silicon oxide (x = 2). The deposition parameters to fabricate crystalline structure (Tb2Si2O7) in oxygen-rich samples are reported where Tb ions are optically active. IMS ECR-PECVD pushes the solubility limit of the rare-earth dopant in silicon films to 17 at.% for the desired future nanophotonic devices.
Graphical Abstract
Funder
New Brunswick Innovation Foundation
Canadian Network for Research and Innovation in Machining Technology, Natural Sciences and Engineering Research Council of Canada
Mitacs
Publisher
Springer Science and Business Media LLC
Subject
Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science