Metal-assisted chemically etched silicon nanopillars hosting telecom photon emitters

Author:

Hollenbach Michael12,Jagtap Nagesh S.12,Fowley Ciarán1ORCID,Baratech Juan1,Guardia-Arce Verónica1,Kentsch Ulrich1ORCID,Eichler-Volf Anna1,Abrosimov Nikolay V.3ORCID,Erbe Artur1ORCID,Shin ChaeHo4ORCID,Kim Hakseong4,Helm Manfred12,Lee Woo45ORCID,Astakhov Georgy V.1ORCID,Berencén Yonder1ORCID

Affiliation:

1. Helmholtz-Zentrum Dresden-Rossendorf, Institute of Ion Beam Physics and Materials Research, 01328 Dresden, Germany

2. Institute of Applied Physics, Technical University of Dresden, 01062 Dresden, Germany

3. Leibniz-Institut für Kristallzüchtung (IKZ), 12489 Berlin, Germany

4. Korea Research Institute of Standards and Science, 34113 Daejeon, Republic of Korea

5. Department of Nano Science, University of Science and Technology (UST), Daejeon 34113, Republic of Korea

Abstract

Silicon, a ubiquitous material in modern computing, is an emerging platform for realizing a source of indistinguishable single photons on demand. The integration of recently discovered single-photon emitters in silicon into photonic structures is advantageous to exploit their full potential for integrated photonic quantum technologies. Here, we show the integration of an ensemble of telecom photon emitters in a two-dimensional array of silicon nanopillars. We developed a top-down nanofabrication method, enabling the production of thousands of nanopillars per square millimeter with state-of-the-art photonic-circuit pitch, all the while being free of fabrication-related radiation damage defects. We found a waveguiding effect of the 1278 nm-G center emission along individual pillars accompanied by improved brightness compared to that of bulk silicon. These results unlock clear pathways to monolithically integrating single-photon emitters into a photonic platform at a scale that matches the required pitch of quantum photonic circuits.

Funder

German Research Foundation

Publisher

AIP Publishing

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3