Recent Advances in Cell Cost and Efficiency for PEM-Based Water Electrolysis

Author:

Ayers Katherine E.,Capuano Christopher,Anderson Everett B.

Abstract

Water electrolysis using proton exchange membrane (PEM) technology is a promising pathway to generate hydrogen for energy applications because of the lack of corrosive electrolytes, small footprint, and ability to generate at differential pressure, requiring only deionized water and an energy source. Using a renewable energy source as the input power enables a carbon-free cycle. In 2008, Proton created a cell stack roadmap to leverage the material advancements made in fuel cells as well as address new design requirements. The overall impact of this research to date has been considerable. Efficiency improvements of 20% have been demonstrated for membrane and catalyst configurations that have been tested to over 1000 hours. Cost reductions of over 15% of the total stack cost have also been proven to be feasible. Additional pathways for the next 3-5 years are expected to continue to make progress in reducing the cost of hydrogen from water electrolysis.

Publisher

The Electrochemical Society

Cited by 82 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3