Agglomerate Engineering to Boost PEM Water Electrolyzer Performance

Author:

Zhao Congfan1ORCID,Yuan Shu1,Cheng Xiaojing1,Shen Shuiyun1,Zhan Ninghua23,Wu Rui2,Mei Xiaohan2,Wang Qian2,An Lu1,Yan Xiaohui1,Zhang Junliang14ORCID

Affiliation:

1. Institute of Fuel Cells School of Mechanical Engineering Shanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 P. R. China

2. Institute of Engineering Thermophysic School of Mechanical Engineering Shanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 P. R. China

3. Chair of Thermal Process Engineering Otto von Guericke University P.O. 4120 39106 Magdeburg Germany

4. MOE Key Laboratory of Power Machinery and Engineering Shanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 P. R. China

Abstract

AbstractDensely packed IrOx‐ionomer agglomerates play a crucial role in the high mass transport resistance inside the anode catalyst layer (ACL), which in turn greatly affects the electrolysis performance at high current density. Therefore, agglomerate engineering for PEMWE is proposed in this work to enhance the oxygen transport process inside ACLs. Using self‐assembling nanotechnology, tightly packed primary aggregates are avoided and introduce the interconnected submicron pores and nanocavities into the catalyst‐ionomer agglomerate, confirmed by synchrotron radiation‐based nano‐CT, TEM, and BET. Such agglomerate engineering results in the enhancement of both dissolved oxygen and oxygen bubble transport inside the ACL confirmed by RDE tests and in‐situ bubble visualization. As a result, the mass transport overpotential is significantly reduced from 330 to 30 mV at 5 A cm−2 in PEMWE, optimized Ohmic resistance and catalyst utilization are also observed. Finally, high operating current density is achieved, i.e., 5 A cm−2 @2.04 V with Nafion 115 membrane and 7 A cm−2 @ 2.07 V with Nafion 212 membrane, under a low catalyst loading of 0.72 mgIr cm−2. This study proves the importance and feasibility of agglomerate engineering in further elevating the performance of PEMWE.

Funder

National Natural Science Foundation of China

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3