Characterization of Electron Emission from High Density Self-Aligned Si-Based Quantum Dots by Conducting-Probe Atomic Force Microscopy

Author:

Takeuchi Daichi,Makihara Katsunori,Ohta Akio,Ikeda Mitsuhisa,Miyazaki Seiichi

Abstract

Self-aligned Si-quantum dots (QDs) with an areal density as high as ~1011 cm-2 were formed on ~1.0 nm thick SiO2/n-Si(100). For spatially-resolved characterization of electron emission from the aligned dots in a diode structure through Au top electrodes, current images were taken using atomic force microscopy in a non-contact mode while maintaining a distance of ~200 nm from the sample surface by using an Au-coated Si cantilever with DC negative bias application to an Al back contact with respect to the grounded Au top electrode at room temperature in atmosphere. In DC bias application of over -5.0 V, non-uniform current image contrast, which is attributable to local electron emission, emerged and enhanced with increasing applied bias. From the band diagram of the self-aligned dots structures at applied biases over -7 V, which is drawn by considering the dot size and oxide thickness evaluated using high resolution transmission electron microscopy observations, the quantized levels of the dots higher than the vacuum level of the top electrode and the tip are thought to be occupied by electrons, which can be interpreted in terms in which the tunneling rate between the lower to upper dots is enhanced as the electrons acquire high kinetic energies. Therefore, the observed electron emission implies quasi-ballistic transport through the aligned-dots structure.

Publisher

The Electrochemical Society

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3