Author:
Koshiyama Takahiro,Nakajima Hironori,Karimata Takahiro,Kitahara Tatsumi,Ito Kohei,Masuda Soichiro,Ogura Yusuke,Shimano Jun
Abstract
In the planar SOFCs, the fuel/oxidant distributions and current collecting resistance cause current and temperature distributions over the electrodes under the separator ribs and flow channels. Optimized design of the separator is hence required to improve the output power and chemical/thermo-mechanical durabilities of practical stacks. To clarify the distributions, we prepare planar cells having three segmented cathodes. Current-voltage characteristics are measured with voltage control using three electric loads to reproduce the electrode potentials of a single cell at around 800°C. We find significantly small in-plane oxygen transport rate under the cathode rib and higher current collecting resistance under the channel. Increased anode rib width gives large overpotential under the rib due to fuel starvation. Finite element modeling supports the above experimental results. We demonstrate an improved separator design of a practical stack, taking advantage of this model. Thereby ca. 17% higher maximum power is given in the finite element simulation.
Publisher
The Electrochemical Society
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献