CVD Growth of GeSnSiC Alloys Using Disilane, Digermane, Tin Tetrachloride and Methylsilane

Author:

Noroozi Mohammad,Abedin Ahmad,Moeen Mahdi,Östling Mikael,Radamson Henry H

Abstract

In this study, Ge1-x-y-zSnxSiyCz layers (0.01≤x≤ 0.06, 0≤y≤0.02 and 0≤z≤0.01) have been successfully grown at 280-330 ¢ªC on Ge and Si by using RPCVD technique. It was demonstrated that the quality of epitaxial layers is dependent on the growth parameters, layer thickness and the quality of Ge virtual layer. It was found that a proper strain balance in the matrix during the epitaxy where the Si is adjusted carefully with the Sn flux improves the incorporation of Sn in Ge matrix. A similar improvement of Sn incorporation has been observed for phosphorous, boron and carbon doping in GeSn layers as well. This is explained by the compensation of the compressive strain caused by Sn by the tensile strain induced by Si to obtain the minimum energy in Ge matrix. This behavior was not observed for relaxed GeSn layers and Sn incorporation could be controlled only by the growth parameters. The thermal stability of GeSn is an important integration issue for device fabrication. The thermal stability of P- and B-doped GeSn layers was studied by rapid thermal annealing (RTA) in range of 400-600 ¢ªC and compared with intrinsic layers. The GeSn layers were stable up to 550 ¢ªC while the P-doped layers showed strain relaxation readily at 450 ¢ªC. The epitaxial quality of epi-layers was evaluated in terms of oxygen and water vapor contamination. The level of oxygen during epitaxy was as low as 10 ppb and the contamination amount was found as low as 1017 cm-3.

Publisher

The Electrochemical Society

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3