Single-Particle Elemental Analysis of μm-Sized Battery Materials by Laser Ablation Inductively Coupled Plasma Mass Spectrometry

Author:

Seiffert Svenja B.,Riewald Felix F.ORCID,Berk Rafael B.ORCID

Abstract

Lithium-nickel-manganese-cobalt-oxides (NCMs) represent a preeminent class of cathode active materials for employment in commercially available lithium-ion battery applications. To realize large-scale production of the respective NCM precursors, coprecipitation is often conducted in continuous stirred-tank reactors (CSTR). However, precursors coming from CSTR processes show broad particle size distributions and undesired compositional differences within and between particles. To quantify this phenomenon, it is necessary to develop analytical tools to access quantitative data on particle composition depending on their size. Here, we demonstrate a novel application of single particle laser ablation-inductively coupled plasma-mass spectrometry to determine particle size-dependent elemental compositions by exemplary investigation of CSTR-based NCM precursors. An enrichment of Ni in larger particles with a concomitant enrichment of Co and Mn in smaller particles was identified. This compositional differences between particles persisted after calcination of the precursors with lithium hydroxide. The observed particle size-dependent concentration differences by spLA-ICP-MS were validated by scanning electron microscopy with energy-dispersive X-ray analysis.

Publisher

The Electrochemical Society

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3