Investigation of the Particle Formation Mechanism during Coprecipitation of Ni-Rich Hydroxide Precursor for Li-Ion Cathode Active Material

Author:

Berk Rafael B.ORCID,Beierling Thorsten,Metzger Lukas,Gasteiger Hubert A.ORCID

Abstract

Industrial production of cathode active material (CAM) for lithium-ion batteries is conducted by coprecipitation of a hydroxide (NixCoyMnz(OH)2) precursor (referred to as pCAM) in a stirred tank reactor and subsequent high-temperature calcination of the pCAM with a lithium compound. The physical properties of the resulting CAM are significantly affected by the associated pCAM utilized for synthesis. For an economical manufacturing of pCAM and CAM, the pCAM particle size and sphericity during the coprecipitation reaction must be precisely controlled, requiring an in-depth understanding of the NixCoyMnz(OH)2 particle formation mechanism. Therefore, the development of the secondary particle size and morphology throughout the semi-batch coprecipitation of Ni0.8Co0.1Mn0.1(OH)2 at various stirring speeds was monitored by light scattering and SEM imaging, respectively. A two-stage particle formation mechanism was identified: In the initial seeding phase, irregular-shaped secondary particles agglomerates are formed, which in the subsequent growth phase linearly increase in size with the third root of time, governed by the growth of individual primary particles. Thereby, the degree of turbulence governs the initial agglomerate size and number formed during seeding, which dictates the growth rate and the secondary particle sphericity. Finally, the proposed particle formation mechanism is compared to mechanisms prevailing in the literature.

Publisher

The Electrochemical Society

Subject

Materials Chemistry,Electrochemistry,Surfaces, Coatings and Films,Condensed Matter Physics,Renewable Energy, Sustainability and the Environment,Electronic, Optical and Magnetic Materials

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3