Defect Chemistry and Mixed Conduction in Lithium Lanthanum Titanate During the Transition from Electrolyte to Anode Material

Author:

Ring Joseph,Nenning AndreasORCID,Fleig JürgenORCID

Abstract

Lithium lanthanum titanate Li0.29+δ La0.57TiO3 (LLTO) is a promising material in Li ion battery application, due to its ambient stability and high ionic conductivity. When it is subjected to a high Li chemical potential, additional Li ions intercalate into vacant A sites, which is balanced by the reduction of Ti4+ ions to Ti3+. At this point, LLTO becomes a mixed ion and electron conductor, which means that it undergoes a transition from an electrolyte to a high rate capable electrode material in the potential range below ca 1.7 V vs Li metal. However, the exact voltage of the transition from electrolyte to the electrode, as well as the electronic conductivity of reduced LLTO were still unknown. Here, we investigate the thermodynamics of lithium insertion as well as ion and electron conductivity of reduced LLTO by employing a galvanostatic intermittent titration technique (GITT) and electrochemical impedance spectroscopy (EIS). We can show that LLTO gradually changes from electrolyte material to a mixed conductor, with an ion transference number that depends on the Li chemical potential. Lastly, we present a defect chemical model that fits excellently to the U(δ) curves and the conductivity data.

Funder

Austrian Science Fund

Publisher

The Electrochemical Society

Subject

Materials Chemistry,Electrochemistry,Surfaces, Coatings and Films,Condensed Matter Physics,Renewable Energy, Sustainability and the Environment,Electronic, Optical and Magnetic Materials

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3