Investigating the Temperature Dependency of Trimethyl Aluminum Assisted Atomic Surface Reduction of Li and Mn-Rich NCM

Author:

Evenstein Eliran,Taragin SarahORCID,Saha Arka,Noked MalachiORCID,Rosy ORCID

Abstract

Most next-generation electrode materials are prone to interfacial degradation, which eventually spreads to the bulk and impairs electrochemical performance. One promising method for reducing interfacial degradation is to surface engineer the electrode materials to form an artificial cathode electrolyte interphase as a protective layer. Nevertheless, the majority of coating techniques entail wet processes, high temperatures, or exposure to ambient conditions. These experimental conditions are only sometimes conducive and can adversely affect the material structure or composition. Therefore, we investigate the efficacy of a low-temperature, facile atomic surface reduction (ASR) using trimethylaluminum vapors as a surface modification strategy for Li and Mn-rich NCM (LMR-NCM). The results presented herein manifest that the extent of TMA-assisted ASR is temperature-dependent. All tested temperatures demonstrated improved electrochemical performance. However, ASR carried out at temperatures >100 °C was more effective in preserving the structural integrity and improving the electrochemical performance. Electrochemical testing revealed improved rate capabilities, cycling stability, and capacity retention of ASR-treated LMR-NCM. Additionally, post-cycling high-resolution scanning electron microscopy analysis verified that after extended cycling, ASR carried out at T > 100 °C showed no cracks or cleavage, demonstrating the efficiency of this method in preventing surface degradation.

Funder

Science and Engineering Research Board

Israel Science Foundation

Publisher

The Electrochemical Society

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3