Optimizing Electrolyte Additive Loadings in NMC532/Graphite Cells: Vinylene Carbonate and Ethylene Sulfate

Author:

Taskovic T.,Thompson L. M.,Eldesoky A.,Lumsden M. D.,Dahn J. R.ORCID

Abstract

A matrix of LiNi0.5Mn0.3Co0.2O2/graphite cells filled with 1.33 molal LiPF6 in EC:EMC:DMC (ethylene carbonate: ethyl methyl carbonate: dimethyl carbonate) (25:5:70 by volume) electrolyte and different weight percentages of vinylene carbonate (VC) and ethylene sulfate (DTD) electrolyte additives underwent prolonged charge-discharge cycling at 20 °C and 40 °C. The volume of gas produced during formation and cycle testing was measured. The impedance spectra of the cells before and after cycling was measured. After testing, the electrolyte was extracted for study by nuclear magnetic resonance spectroscopy (NMR) and gas chromatography/mass spectroscopy (GC-MS) to determine what changes in electrolyte composition had occurred. Some cells had their negative electrodes studied by scanning micro-X-ray fluorescence to quantify the amount of transition metals that transferred from the positive electrode to the negative electrode during the testing. Cells containing 1% VC or 2% VC with an additional 1% DTD by weight had the best capacity retention and lowest impedance growth. NMR and GC-MS suggest that these additive combinations promote increased electrolyte salt consumption which may represent a source of lithium to replenish the lithium inventory. Only a small amount of transition metals (0.03% or less) originating from the positive electrode active material was found on the negative electrode after testing. Most cells had over 1500 cycles at both 20 °C and 40 °C conditions.

Publisher

The Electrochemical Society

Subject

Materials Chemistry,Electrochemistry,Surfaces, Coatings and Films,Condensed Matter Physics,Renewable Energy, Sustainability and the Environment,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3