High Voltage Electrolyte Design Mediated by Advanced Solvation Chemistry Toward High Energy Density and Fast Charging Lithium‐Ion Batteries

Author:

Cheng Haoran12,Ma Zheng1,Kumar Pushpendra3,Liang Honghong12,Cao Zhen4,Xie Hongliang1,Cavallo Luigi4,Kim Hun5,Li Qian1,Sun Yang‐Kook5ORCID,Ming Jun12ORCID

Affiliation:

1. State Key Laboratory of Rare Earth Resource Utilization Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun 130022 P. R. China

2. School of Applied Chemistry and Engineering University of Science and Technology of China Hefei 230026 P. R. China

3. School of Physical Sciences Jawaharlal Nehru University New Delhi 110067 India

4. KAUST Catalysis Center King Abdullah University of Science and Technology (KAUST) Thuwal 23955‐6900 Saudi Arabia

5. Department of Energy Engineering Hanyang University Seoul 133‐791 Republic of Korea

Abstract

AbstractElectrolyte is critical for transporting lithium‐ion (Li+) in lithium‐ion batteries (LIBs). However, there is no universally applicable principle for designing an optimal electrolyte. In most cases, the design process relies on empirical experiences and is often treated as highly confidential proprietary information. Herein, a solvation structure‐related model for the quantitative design of electrolytes is introduced, focusing on the principles of coordination chemistry. As a paradigmatic example, a high‐voltage electrolyte (i.e., 4.5 V vs anode) aimed at achieving a high energy density and fast charging LIB, which is specifically composed of an emerging, well‐constructed hybrid hard carbon‐silicon/carbon‐based anode, and lithium cobalt oxide cathode, is developed. Not only the functions of each electrolyte component at the molecular scale within the Li+ solvation structure are analyzed but also an interfacial model is introduced to elucidate their relationship with the battery performance. This study represents a pioneering effort in developing a methodology to guide electrolyte design, in which the mutual effects of the Li+ de‐solvation process and solid electrolyte interface (SEI) on the electrode surface are explored concurrently to understand the root cause of superior performance. This innovative approach establishes a new paradigm in electrolyte design, providing valuable insights at the molecular level.

Funder

National Natural Science Foundation of China

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3