Design and Development of an Innovative Barrier Layer to Mitigate Crossover in Vanadium Redox Flow Batteries

Author:

Cecchetti MarcoORCID,Ebaugh Thomas Allen,Yu Haoran,Bonville Leonard,Gambaro Chiara,Meda Laura,Maric Radenka,Casalegno Andrea,Zago MatteoORCID

Abstract

Capacity loss induced by the undesired transport of vanadium ions across the ion-exchange membrane (i.e. crossover) is one of the most critical issues associated with vanadium redox flow batteries. This work reports on the manufacturing and testing of an innovative barrier layer to mitigate crossover. The barrier layer conceptual design is described in detail in the patent application WO 2019/197917. The barrier was deposited directly onto Nafion® 212 using the Reactive Spray Deposition Technology, in which carbon-rich particles (∼4–10 nm in diameter) formed in the flame were deposited simultaneously with a mixture of 1100EW Nafion® and Vulcan® XC-72R (∼40 nm diameter) that was sprayed from air-assisted secondary nozzles. During cycles at fixed capacity, the presence of the barrier layer significantly reduced battery self-discharge; the average variation of battery state of charge compared to a reference cell with Nafion® 115 was reduced from 21% to 7%. Moreover, battery energy efficiency was increased by nearly 5%, indicating that the barrier layer does not significantly hinder proton transport. During cycles at 50 mA cm−2 with fixed cut-off voltages, the barrier layer exhibited stable operation, maintaining a coulombic efficiency around 99.4%. Additionally, the use of the barrier layer projects to a 30% reduction of stack-specific cost.

Funder

ENI S.p.A.

Publisher

The Electrochemical Society

Subject

Materials Chemistry,Electrochemistry,Surfaces, Coatings and Films,Condensed Matter Physics,Renewable Energy, Sustainability and the Environment,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3