Development of a Vanadium Redox Flow Battery Operating with Thin Membrane Coupled with a Highly Selective and Stable Silica‐Based Barrier Layer

Author:

Cecchetti Marco1ORCID,Ebaugh Thomas A.2ORCID,Bonville Leonard2ORCID,Maric Radenka2ORCID,Casalegno Andrea1ORCID,Zago Matteo1ORCID

Affiliation:

1. Department of Energy Politecnico di Milano Via Lambruschini 4 20156 Milano Italy

2. Center for Clean Energy Engineering University of Connecticut Storrs CT 06269 USA

Abstract

Vanadium redox flow battery (VRFB) is a very promising solution for large‐scale energy storage, but some technical issues need to be addressed. Crossover, i.e., the undesired permeation of vanadium ions through the cell separator, causes capacity loss and self‐discharge. Low‐cost and highly selective separators are thus required to improve the competitiveness of this technology. This work investigates the use of silica nanoparticles in an innovative selective layer to improve membrane selectivity and reduce its thickness. 1.5 μm thick barrier layers composed of 1100EW Nafion ionomer with silica (≈3–13 nm diameter) and Vulcan XC‐72R (≈40 nm) nanoparticles in different proportions are directly deposited on 50 μm thick Nafion membranes. The barrier layer composed only of silica nanoparticles reduces the self‐discharge due to crossover by 5 times and increases the average efficiency of the battery. Finally, during more than 1000 h of operation, the barrier layer on a 25 μm Nafion membrane demonstrates excellent stability, working with a constant coulombic efficiency higher than 99% and a capacity decay rate comparable with a thicker Nafion membrane, thus enabling the use of thinner membranes in VRFB, allowing an estimated 8% stack costs reduction with respect to NR212.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3