Performance Enhancement of a Membrane Electrochemical Cell for CO2 Capture

Author:

Muroyama Alexander P.ORCID,Abu-Arja Dania,Rogerio Barbara Kohlrausch,Masiello DavideORCID,Winzely MaximilianORCID,Gubler LorenzORCID

Abstract

The utilization of renewable electrons to capture and valorize CO2 will be a critical component in achieving a net zero emission society. The deployment of electrochemically driven technologies will depend on whether they can operate efficiently and economically at scale. We have proposed an anion exchange membrane-based device to regenerate the alkalinity of a carbonate capture solution while simultaneously concentrating CO2 in an H2 stream. To improve the technology readiness, we have reduced overpotentials in the cell and increased the operating current density through design optimization of the cathode compartment. The use of targeted geometries to promote bubble evacuation from the cell, particularly for the cathode spacer, had a significant effect on reducing the cell voltage and enabled higher current density operation than what was previously attainable. Using a pure K2CO3(aq) feed, the cell achieved a specific energy consumption of 290 kJ∙molCO2 −1 at 100 mA∙cm−2, with a faradaic efficiency of 45% (90% CO3 2− transport). The specific energy consumption reached a minimum at moderate current densities (∼50 mA∙cm−2), with a cell voltage of ∼1 V. This work shows that reasonable specific energy consumption at industrially relevant current densities can be enabled through cell design, material selection, and effective management of bubbles.

Funder

Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung

Publisher

The Electrochemical Society

Subject

Materials Chemistry,Electrochemistry,Surfaces, Coatings and Films,Condensed Matter Physics,Renewable Energy, Sustainability and the Environment,Electronic, Optical and Magnetic Materials

Reference39 articles.

1. Direct capture of CO2 from ambient air;Sanz-Pérez;Chem. Rev.,2016

2. Progress in carbon capture technologies;Wilberforce;Sci. Total Environ.,2021

3. Review—CO2 separation and transport via electrochemical methods;Muroyama;J. Electrochem. Soc.,2020

4. Electrochemical carbon dioxide capture to close the carbon cycle;Sharifian;Energy Environ. Sci.,2021

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3