Review—CO2 Separation and Transport via Electrochemical Methods

Author:

Muroyama Alexander P.ORCID,Pătru AlexandraORCID,Gubler LorenzORCID

Abstract

This review focuses on research advancements in electrochemical methods of CO2 separation as part of the broader field of CO2 capture. Such methods are a potentially effective way of separating CO2 from dilute gas mixtures (e.g., flue gas, air) such that it can be sequestered or recycled for other purposes. Electrodialysis using a liquid electrolyte capture solution is the most thoroughly explored electrochemical approach for CO2 capture. The purpose of this review is to provide a broad overview of developments in the field, highlighting and harmonizing relevant figures of merit such as specific energy consumption and faradaic efficiency. In addition, the use of alkaline membranes is separately surveyed as a promising means of electrochemical CO2 separation, as their CO2 transport phenomena are well understood within the context of alkaline fuel cells or electrochemical CO2 reduction. Recent materials advancements enable the use and modification of these membranes to promote electromigration of (bi)-carbonate ions, the result being CO2 concentration on the anode side of an electrochemical cell.

Funder

Shell Global Solutions BV

Publisher

The Electrochemical Society

Subject

Materials Chemistry,Electrochemistry,Surfaces, Coatings and Films,Condensed Matter Physics,Renewable Energy, Sustainability and the Environment,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3