Abstract
Bond formation and breakage is crucial upon energy storage in lithium transition metal oxides (LiMeO2, Me = Ni, Co, Mn), i.e., the conventional cathode materials in Li ion batteries. Near-edge X-ray absorption finestructure spectroscopy (NEXAFS) of the Me L and O K edge performed upon the first discharge of LiNixCo(1−x)/2Mn(1−x)/2O2 (x = 0.33: NCM111, x = 0.6: NCM622, x = 0.8: NCM811) in combination with charge transfer multiplet (CTM) calculations provide unambiguous evidence that redox reactions in NCMs proceed via a reversible oxidation of Ni associated with the formation of covalent bonds to O neighbors, and not, as widely assumed, via pure cationic or more recently discussed, pure anionic redox processes. Correlating these electronic changes with crystallographic data using operando synchrotron X-ray powder diffraction (SXPD) shows that the amount of ionic Ni limits the reversible capacity— at states of charge where all ionic Ni is oxidized (above 155 mAh g−1), the lattice parameters collapse, and irreversible reactions are observed. Yet the covalence of the Ni–O bonds also triggers the electronic structure and thus the operation potential of the cathodes.
Funder
Federal Ministry of Education and Research
Publisher
The Electrochemical Society
Subject
Materials Chemistry,Electrochemistry,Surfaces, Coatings and Films,Condensed Matter Physics,Renewable Energy, Sustainability and the Environment,Electronic, Optical and Magnetic Materials
Reference101 articles.
1. Lithium Batteries: Status, Prospects and Future;Scrosati;J. Power Sources,2010
2. Before Li Ion Batteries;Winter;Chem. Rev.,2018
3. Lithium-Ion Batteries—New Business Models Emerging;Bernhart,2020
Cited by
22 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献