Temporal Evolution of Corrosion Film Nano-Porosity and Magnesium Alloy Hydrogen Penetration in NaCl Solution

Author:

Brady Michael P.ORCID,Rother Gernot,Frith Matthew G.,Ievlev Anton E.,Leonard Donovan N.,Littrell Kenneth C.,Cakmak Ercan,Meyer Harry M.,Anovitz Lawrence M.,Davis Bruce

Abstract

Exposures of 0.5, 1, 4, 8, and 24 h were conducted for Mg-3Al-1Zn (AZ31B) and Mg-1.5Zn-0.3Zr-<0.5Nd (ZE10A, ZEK100 type) alloys in D2O with 5 weight% (wt%) NaCl. Multiple techniques including small angle neutron scattering (SANS) and scanning transmission electron microscopy (STEM) were used to follow the growth of nano-porous oxide-hydroxide corrosion films. On the same samples, time of flight mass spectrometry (ToF SIMS) was used to study the penetration of deuterium into the alloys in advance of the films. The SANS scattering invariants, which are proportional to the number of nanoscale features, increased approximately linearly with time for both alloys. Analysis with the polydisperse hard sphere model for fractal systems suggests that the nano-porous structures grew at all length scales assessed, but that the size distribution did not change significantly with reaction time, i.e., the film thickness increased while the nano-porosity structures remained essentially constant. Extensive penetration of deuterium into the underlying alloy was observed by ToF-SIMS for ZE10A, but not AZ31B despite similar corrosion film growth behavior. The depth profiles suggest an alloy diffusion-controlled deuterium penetration over time, which is of similar extent to that previously observed in water without NaCl. Implications for the corrosion mechanism(s) are discussed.

Funder

Office of Science

Vehicle Technologies Program

Office of Nuclear Energy

Publisher

The Electrochemical Society

Subject

Materials Chemistry,Electrochemistry,Surfaces, Coatings and Films,Condensed Matter Physics,Renewable Energy, Sustainability and the Environment,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3