Grain Boundary Wetting Transition in the Mg-Based ZEK 100 Alloy

Author:

Straumal Boris12,Khrapova Natalya1,Druzhinin Aleksandr1,Tsoy Kristina1,Davdian Gregory12ORCID,Orlov Valery1ORCID,Gerstein Gregory3,Straumal Alexander4

Affiliation:

1. Osipyan Institute of Solid State Physics, The Russian Academy of Sciences, Ac. Osipyan Str. 2, 142432 Chernogolovka, Russia

2. Department of Physical Chemistry, National University of Science and Technology MISiS, Leninskiy Ave. 4, 119049 Moscow, Russia

3. Institute for Material Science, Leibniz Universität Hannover, An der Universität 2, 30823 Garbsen, Germany

4. Department of Materials for Agrotechnology, Cotton Breeding, Seed Production and Agrotechnologies Research Institute, University Str. 3, Salar, Tashkent 702147, Uzbekistan

Abstract

Modern magnesium-based alloys are broadly used in various industries as well as for biodegradable medical implants due to their exceptional combination of light weight, strength, and plasticity. The studied ZEK100 alloy had a nominal composition of 1 wt.% zinc, 0.1 wt.% zirconium, and 0.1 wt.% rare earth metals (REMs) such as Y, Ce, Nd, and La, with the remainder being Mg. It has been observed that between the solidus (Ts = 529.5 ± 0.5 °C) and liquidus temperature (Tl = 645 ± 5 °C), the Mg/Mg grain boundaries can contain either the droplets of a melt (incomplete or partial wetting) or the continuous liquid layers separating the abutting Mg grains (complete wetting). With the temperature increasing from Ts to Tl, the transformation proceeds from incomplete to complete grain boundary wetting. Below 565 °C, all grain boundaries are partially wetted by the melt. Above 565 °C, the completely wetted Mg/Mg grain boundaries appear. Their portion grows quickly with an increasing temperature until reaching 100% at 622 °C. Above 622 °C, all the solid Mg grains are completely surrounded by the melt. After rapid solidification, the REM-rich melt forms brittle intermetallic compounds. The compression strength as well as the compression yield strength parameter σ02 strongly depend on the morphology of the grain boundary layers. If the hard and brittle intermetallic phase has the shape of separated particles (partial wetting), the overall compression strength is about 341 MPa and σ02 = 101 MPa. If the polycrystal contains the continous intergarnular layers of the brittle intermetallic phase (complete wetting), the overall compression strength drops to 247 Mpa and σ02 to 40 Mpa. We for the first time observed, therefore, that the grain boundary wetting phenomena can strongly influence the mechanical properties of a polycrystal. Therefore, grain boundary wetting can be used for tailoring the behavior of materials.

Publisher

MDPI AG

Subject

Inorganic Chemistry,Condensed Matter Physics,General Materials Science,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3