A Novel Approach for Real-Time Enumeration of Escherichia coli ATCC 47076 in Water through High Multi-Functional Engineered Nano-Dispersible Electrode

Author:

Panhwar SallahuddinORCID,Aftab Adnan,Keerio Hareef Ahmed,ilhan Hasan,Sarmadivaleh Mohammad,Tamer UgurORCID

Abstract

The climate change is significantly evolving novel microbes in the environment. In addition, nanoscience is advancing promptly to provide environmentally friendly engineering solutions to detect these microbes (i.e., pathogenic bacteria and viruses) in blood and water. There is a need to develop smart and efficient nano-biosensor to detect the pathogens, Escherichia coli (ATCC 47076) in the drinking water to protect the public against the diseases like hemolytic uremic, gastroenteritis, and acute diarrheas. The immunomagnetic separation strategy enables detecting bacteria in water samples fast and efficiently. The developed sensor is capable for the detection targeted E. coli ATCC 46076 based on Stripping differential pulse voltammetry (SDPV) and Cyclic Voltammetry (CV) measurements with a dynamic linear range of 101 to 107 CFU ml−1. Functionalized magnetite metal-organic frameworks (MOFs) serve as a capture probe and Spectro-electrochemical label. The developed disposable electrode offers advantages such as large dynamic range, high sensitivity, high selectivity, and short analysis time (5 min). As for as we know, this is the first report to display the potential of the AuNPs and MOFs nanoparticles based dispersible electrode for the detection of targeted E. coli from water and blood.

Publisher

The Electrochemical Society

Subject

Materials Chemistry,Electrochemistry,Surfaces, Coatings and Films,Condensed Matter Physics,Renewable Energy, Sustainability and the Environment,Electronic, Optical and Magnetic Materials

Reference43 articles.

1. Nanostructured electrochemical biosensors for label-free detection of water-and food-borne pathogens;Saint;ACS Appl. Mater. Interfaces,2018

2. Coronavirus disease 2019 (COVID-19) outbreak: some serious consequences with urban and rural water cycle;Bhowmick;npj Clean Water.,2020

3. Biosensors for on-line water quality monitoring–a review;Hossain;Arab Journal of Basic and Applied Sciences.,2019

4. Drinking water quality status and contamination in Pakistan;Daud;BioMed Res. Int.,2017

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3