Magnetic nanomaterials as an effective absorbent material for removal of fluoride concentration in water: a review

Author:

Panhwar Sallahuddin12,Keerio Hareef Ahmed3,Khokhar Nadar Hussain4,Muqeet Muhammad5,Ali Zouhaib2,Bilal Muhammad2,Ul Rehman Ajeeb2

Affiliation:

1. a Department of Analytical Chemistry, Faculty of Pharmacy, Gazi University, 06330 Ankara, Turkey

2. b Department of Civil Engineering, National University of Science and Technology, Balochistan, Campus, Quetta, Pakistan

3. c Department of Environmental Engineering, Quaid E Awam University of Engineering Science and Technology, Nawabshah, Pakistan

4. d Department of Science and Technology, Indus university Karachi, Sindh, Pakistan

5. e Department of Chemistry, Pak-Austria Fachhochschule, Institute of Applied Sciences & Technology Mang Khanpur, Karachi, Pakistan

Abstract

Abstract The rapid increases in industrialization and populations are significant sources of water contamination. The speed with which contamination of groundwater and surface water occurs is becoming a serious problem and poses a significant obstacle for water stakeholders. Heavy metals, organic, and inorganic contaminants in the form of suspended and dissolved materials are just a few of the contaminants that can be found in drinking water. One of the most common contaminants in the water is fluoride, which is responsible for numerous toxic diseases. Different traditional techniques, for example, coagulation, ion exchange, absorption, and membrane filtration are being used to dispose of fluoride from water. However, nanomaterials such as magnetic nanoparticles (NPs) are very efficient, reliable, cost-effective, and stable materials to replace traditional water treatment techniques. There has been an increase in interest in the application of nanomaterials to the purification of drinking water over the past few decades. The use of magnetic NPs, such as metal and metal oxide NPs, to remove fluoride ions and organic matter from water is highlighted in this review article. Also, this section also discusses the properties, benefits and drawbacks, and difficulties of utilizing magnetic NPs in the process of purifying drinking water.

Publisher

IWA Publishing

Subject

Infectious Diseases,Microbiology (medical),Public Health, Environmental and Occupational Health,Waste Management and Disposal,Water Science and Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3