Chrysalis-Like Graphene Oxide Decorated Vanadium-Based Nanoparticles: An Extremely High-Power Cathode for Magnesium Secondary Batteries

Author:

Pagot GioeleORCID,Vezzù KetiORCID,Nale Angeloclaudio,Fauri MaurizioORCID,Migliori AndreaORCID,Morandi VittorioORCID,Negro EnricoORCID,Di Noto VitoORCID

Abstract

Rechargeable batteries based on magnesium virtually provide high volumetric capacity, safety, and cost savings thanks to the abundance, dendrite-free electrodeposition, and environmentally green properties of Mg metal anode. The lack of cathodes that can deliver high currents at high potential is one of the principal bottlenecks that limit the entrance of Mg batteries into the market. Here we report the synthesis and characterization of a novel cathode for magnesium secondary batteries based on graphene oxide (GO) and vanadium (V) active species. Thermogravimetric analysis, structural and vibrational analyses, and high-resolution electron microscopies elucidate the complex architecture that characterizes the proposed material and that bestows exceptional electrochemical properties to the cathode. The proposed synthesis is able to give rise to V-based nanoparticles with a very porous surface and wrapped inside a chrysalis-like GO ordered superstructure. Finally, a coin cell device is assembled using a Mg metal anode and the proposed material as cathode. This prototype is able to deliver good capacities when cycled at high current rates (1000 mA g−1) in a higher potential range with respect to classical cathodes for Mg batteries. Thus, a sufficient power (1.70 W g−1) is obtained, making this battery promising towards the substitution of lithium batteries.

Funder

“Centro Studi di Economia e Tecnica dell’Energia Giorgio Levi Cases” of the University of Padova

European Union’s Horizon 2020 research and innovation program

Università degli Studi di Padova

Publisher

The Electrochemical Society

Subject

Materials Chemistry,Electrochemistry,Surfaces, Coatings and Films,Condensed Matter Physics,Renewable Energy, Sustainability and the Environment,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3