Nanoparticle-enhanced multifunctional nanocarbons—recent advances on electrochemical energy storage applications

Author:

Ghosh SubrataORCID,Polaki S RORCID,Macrelli AndreaORCID,Casari Carlo SORCID,Barg SuelenORCID,Jeong Sang MunORCID,Ostrikov Kostya (Ken)ORCID

Abstract

Abstract As renewable energy is becoming a crucial energy source to meet the global demand, electrochemical energy storage devices become indispensable for efficient energy storage and reliable supply. The electrode material is the key factor determining the energy storage capacity and the power delivery of the devices. Carbon-based materials, specifically graphite, activated carbons etc, are extensively used as electrodes, yet their low energy densities impede the development of advanced energy storage materials. Decoration by nanoparticles of metals, metal oxides, nitrides, carbides, phosphides, chalcogenides and bimetallic components is one of the most promising and easy-to-implement strategies to significantly enhance the structural and electronic properties, pore refinement, charge storage and charge-transfer kinetics of both pristine and doped carbon structures, thereby making their performance promising for next-generation energy storage devices. Structuring the materials at nanoscale is another probable route for better rate performance and charge-transfer kinetics. This review covers the state-of-art nanoparticle decorated nanocarbons (NCs) as materials for battery anode, metal-ion capacitor anode and supercapacitor electrode. A critical analysis of the elemental composition, structure, associated physico-chemical properties and performance relationships of nanoparticle-decorated NC electrodes is provided as well to inform the future development of the next-generation advanced energy storage materials and devices.

Funder

H2020 European Research Council

Publisher

IOP Publishing

Subject

Surfaces, Coatings and Films,Acoustics and Ultrasonics,Condensed Matter Physics,Electronic, Optical and Magnetic Materials

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3