Candle Soot as a Novel Support for Nickel Nanoparticles in the Electrocatalytic Ethanol Oxidation

Author:

Mansor Muliani1ORCID,Budiman Siti Noorleila1ORCID,Zainoodin Azran Mohd2ORCID,Khairunnisa Mohd Paad134ORCID,Yamanaka Shinya3ORCID,Jusoh Nurfatehah Wahyuny Che1ORCID,Liza Shahira4ORCID

Affiliation:

1. Department of Chemical and Environmental Engineering, Malaysia-Japan International Institute of Technology (MJIIT), Universiti Teknologi Malaysia Kuala Lumpur, Jalan Sultan Yahya Petra, Kuala Lumpur 54100, Malaysia

2. Fuel Cell Institute, Universiti Kebangsaan Malaysia, Bangi 43600, Malaysia

3. Department of Applied Science, Muroran Institute of Technology, Muroran 050-8585, Japan

4. Tribology and Precision Machining i-Kohza, Malaysia-Japan International Institute of Technology (MJIIT), Universiti Teknologi Malaysia Kuala Lumpur, Jalan Sultan Yahya Petra, Kuala Lumpur 54100, Malaysia

Abstract

The enhancement of carbon-supported components is a crucial factor in augmenting the interplay between carbon-supported and metal-active components in the utilization of catalysts for direct ethanol fuel cells (DEFCs). Here, we propose a strategy for designing a catalyst by modifying candle soot (CS) and loading nickel onto ordered carbon soot. The present study aimed to investigate the effect of the Ni nanoparticles content on the electrocatalytic performance of Ni–CS, ultimately leading to the identification of a maximum composition. The presence of an excessive quantity of nickel particles leads to a decrease in the number of active sites within the material, resulting in sluggishness of the electron transfer pathway. The electrocatalyst composed of nickel and carbon support, with a nickel content of 20 wt%, has demonstrated a noteworthy current activity of 18.43 mA/cm2, which is three times that of the electrocatalyst with a higher nickel content of 25 wt%. For example, the 20 wt% Ni–CS electrocatalytic activity was found to be good, and it was approximately four times higher than that of 20 wt% Ni–CB (nickel–carbon black). Moreover, the chronoamperometry (CA) test demonstrated a reduction in current activity of merely 65.80% for a 20 wt% Ni–CS electrocatalyst, indicating electrochemical stability. In addition, this demonstrates the great potential of candle soot with Ni nanoparticles to be used as a catalyst in practical applications.

Funder

Universiti Kebangsaan Malaysia

Japan Society for the Promotion of Science (JSPS) KAKENHI

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3