Abstract
Hierarchical C@MoS2 hollow spheres assembled from few layer-MoS2 nanosheets coated on both interior and exterior surfaces of hollow carbon spheres (HCSs) have been developed by a modified template method. The polydopamine-derived carbon shell functions as a support with a negatively charged surface resulting in the in situ growth of few layer-MoS2 nanosheets and prevents them from agglomeration with an integrated structure. In addition, the hollow carbon spheres with their mesopores provide sufficient liquid-solid contact area and shorter electron and ion pathways, as well as buffer for volume changes occurring during the charge/discharge process. The prepared C@MoS2 material is characterized by XRD, TGA, BET, Raman, SEM, HRTEM and XPS measurements. When applied as a negative electrode material in LIBs, the C@MoS2 electrode exhibits high reversible gravimetric capacity (1100 mAh·g−1 at 0.1 C), superior rate performance (633 mAh·g−1 at 20.0 C) and superb cycling life (86.0% of its original specific capacity left after 130 cycles).
Funder
National Natural Science Foundation of China
Saint Petersburg State University
Publisher
The Electrochemical Society
Subject
Materials Chemistry,Electrochemistry,Surfaces, Coatings and Films,Condensed Matter Physics,Renewable Energy, Sustainability and the Environment,Electronic, Optical and Magnetic Materials
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献