Effect of Borophene on the Electrochemical Performances of Li7P3S11 based AllSolid-State Lithium Sulfur Batteries
Author:
TÜRK Çağrı Gökhan1ORCID, TOKUR Mahmud1ORCID
Abstract
This study has investigated the effect of 2-dimensional (2D) beta borophene as a cathode additive for all-solid-state lithium-sulfur batteries. The comparisons have been carried out regarding the impact on ionic conductivity based on borophene content. Although the studies of borophene's contributions in the literature on the anode component, this study focuses on the cathode contribution for the first time. While MoS2 has been selected as the cathode active material, carbon black has been selected as the electrical conductor, and Li7P3S11 solid electrolyte has been synthesized as an ionic conductor in all-solid-state lithium-sulfur cells. Borophene has been synthesized from boron powder by the exfoliation method. As a cathodeactive material, MoS2, containing sulfur, and its 2D material nature, eliminates many of the disadvantages that sulfur exhibits when used alone. To investigate the effect of borophene on ionic conductivity in all-solid-state lithium-sulfur cells, multicomponent composite cathodes were prepared in (MoS2 / Conductive Carbon / Li7P3S11 + Borophene) overall compositions. According to the results, the specific capacity of the cells is affected negatively, while the stability of the cell is affected positively when increased the borophene amount.
Funder
Scientific and Technological Research Council of Turkey
Publisher
Sakarya University Journal of Science
Reference30 articles.
1. [1] 1. G. Tan, R. Xu, Z. Xing, Y. Yuan, J. Lu, J. Wen, C. Liu, L. Ma, C. Zhan, Q. Liu, and T. Wu, "Burning lithium in CS2 for high-performing compact Li2S–graphene nanocapsules for Li–S batteries," Nature Energy, vol. 2, no. 7, pp. 1-10, 2017. 2. [2] 2. S. Gohari, M. R. Yaftian, M. Tokur, A. Kızılaslan, H. Shayani-Jam, H. Akbulut, and M. R. Sovizi, "Parametric optimization of sulfur@ graphene composites for aqueous and solid-state rechargeable lithium-sulfur batteries," Diamond and Related Materials, vol. 139, pp. 110267, 2023. 3. [3] 3. J. Zhou, P. Chen, W. Wang, X. Zhang, "Li7P3S11 electrolyte for all-solid-state lithium-ion batteries: structure, synthesis, and applications,"Chemical Engineering Journal, vol. 446, pp. 137041, 2022. 4. [4] 4. A. J. Mannix, X. F. Zhou, B. Kiraly, J. F. Wood, D. Alducin, B. D. Myers, X. Liu, B. L. Fisher, U. Santiago, J. R. Guest, M. J. Yacaman, "Synthesis of borophenes: Anisotropic, two-dimensional boron polymorphs," Science, vol. 350, no.6267, pp. 1513-1516, 2015. 5. [5] 5. S. Guha, A. Kabiraj, S. Mahapatra, "Discovery of Clustered-P1 Borophene and Its Application as the Lightest High-Performance Transistor," ACS Applied Materials & Interfaces, vol. 15, no. 2, pp. 3182-3191, 2023.
|
|