Aging Mechanism For Calendar Aging of Li-Ion Cells With Si/Graphite Anodes

Author:

Bischof KatharinaORCID,Flügel MariusORCID,Hölzle Markus,Wohlfahrt-Mehrens MargretORCID,Waldmann ThomasORCID

Abstract

Calendar aging of Li-ion batteries with Si/graphite electrodes was investigated within this study. A total of 121 single-layer pouch full cells with either graphite or Si/graphite (3.0 wt−%, 5.8 wt−% and 20.8 wt−% Si) anodes and NMC622 cathodes with the same N/P ratio were built on pilot-scale. Calendar aging was studied at SoC 30%, 60%, and 100%, as well as temperature (25 °C, 45 °C, 60 °C) and time dependence. The aging data was analyzed in terms of capacity fade and a square-root behavior was observed. Differential voltage analysis (DVA) has been performed as a function of aging time. The observed temperature and time dependence is best described by time dependent, 3D Arrhenius plots. Post-Mortem analysis (SEM, EDX, GD-OES) is applied to investigate the changes on electrode and material level. Conclusions are drawn on the main aging mechanisms for calendar aging of Li-ion cells with Si/graphite anodes and differences between Si/graphite and pure graphite anodes are discussed. The Si-containing cells show a combination of lithium inventory loss and a loss of accessible Si active material, both caused by SEI growth.

Funder

Bundesministerium für Bildung und Forschung

Publisher

The Electrochemical Society

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3