Understanding and Enhancing Silicon Nanoparticle Distribution during Electrode Processing

Author:

Wu Bingbin,Quinn Joseph,Li Jingnan,Li Qiuyan,Liu Dianying,Martin Witness,Baar Kevin,Zhong Lirong,Wang Chongming,Xiao JieORCID

Abstract

Silicon-dominant anodes are of great interest because of their potential to boost the cell-level energy of state-of-the-art Li-ion batteries. While silicon materials have been extensively studied, understanding interactions at the electrode level has recieved little attention, especially the coating process of Si particles, which plays an equally important role in unlocking the full potential of silicon anodes. Herein, the electrode processing of a Si-dominated anode (52.8 wt%, 3.5–4.5 mAh cm−2) is being investigated to understand the relationship of processing on the morphology and properties of Si anodes at the electrode level. It has been found that almost-undetectable Si agglomerates easily form during electrode processing, which grow into largeprotrusions after lithiation and trigger potential internal shorting and self-discharge problems. A facile slurry filtration step is proposed to homogenize the particle distribution within Si-dominant electrodes which improves the electrochemical performance and storage stability of Si-based Li ion batteries.

Funder

Vehicle Technologies Office

Publisher

The Electrochemical Society

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3