Competing Ethylene Carbonate Reactions on Carbon Electrode in Li-Ion Batteries

Author:

Lundström RobinORCID,Gogoi NeehaORCID,Hou XuORCID,Berg Erik J.ORCID

Abstract

Ethylene carbonate (EC) is the archetype solvent in Li-ion batteries. Still, questions remain regarding the numerous possible reaction pathways of EC. Although the reaction pathway involving direct EC reduction and SEI formation is most commonly discussed, EC ring-opening is often observed, but seldomly addressed, especially with respect to SEI formation. By applying Online Electrochemical Mass Spectrometry, the EC ring-opening reaction on carbon is found to start already at ∼2.5 V vs Li+/Li as initiated by oxygenic carbon surface groups. Later, OH generated from H2O reduction reaction at ∼1.6 V further propagates EC to ring-open. The EC reduction reaction occurs <0.9 V but is suppressed depending on the extent of EC ring-opening at higher potentials. Electrode/electrolyte impurities and handling conditions are found to have a significant influence on both processes. In conclusion, SEI formation is shown to be governed by several kinetically competing reaction pathways whereby EC ring-opening can play a significant role.

Funder

Knut och Alice Wallenbergs Stiftelse

Stiftelsen för Strategisk Forskning

Publisher

The Electrochemical Society

Subject

Materials Chemistry,Electrochemistry,Surfaces, Coatings and Films,Condensed Matter Physics,Renewable Energy, Sustainability and the Environment,Electronic, Optical and Magnetic Materials

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3