Abstract
A composite electrode composed of electrodeposited, nickel-iron nanostructured clusters onto a glassy carbon (GC) disk electrode was used as a working electrode to detect methylene blue at concentrations below 10 μM. The Ni-Fe clusters were prepared by pulse electrodeposition and a lateral composition variation was observed reflective of a local pH change across the Ni-Fe feature. The applied potential for the detection of MB at a pH of 4 was determined through voltammetry, and demonstrated using chronoamperometry and electrochemical impedance spectroscopy (EIS). The adsorption of MB influenced both the capacitance, C, and ohmic resistance, R
s
. A peak present in
i
t
1
/
2
vs t chronoamperometry plots decreased with lower MB bulk concentration, while in contrast, the RsC parameters determined from equivalent circuit models of EIS had the opposite behavior having a larger signal with lower MB concentration, and hence providing a way to increase the detection signal at lower MB concentration.
Publisher
The Electrochemical Society
Subject
Materials Chemistry,Electrochemistry,Surfaces, Coatings and Films,Condensed Matter Physics,Renewable Energy, Sustainability and the Environment,Electronic, Optical and Magnetic Materials
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献