Editors’ Choice—Lithium Primary Batteries Employing Multi-Electron Carbon-Fluorine Bond Cleavage in Perfluoroalkylated Reactants

Author:

Gao HainingORCID,Sevilla AlejandroORCID,Gallant Betar M.ORCID

Abstract

While Li−carbon monofluoride (CFx) is the current energy leader among primary batteries, the technology is maturing, motivating further fundamental study of Li battery chemistry based on C−F redox. This study examines the possibility to conduct multi-electron carbon reduction using a candidate class of liquid CFx analogues, perfluoroalkyl iodides (CnF2n+1I, with F/C ratios of x > 2), in supporting electrolyte as catholytes for Li cells. The large, polarizable iodine supports electrochemical reduction with concerted F ligand expulsion, forming lithium fluoride (LiF) as the main solid discharge product. Under initial conditions (1 M reactant and 0.3 mA cm−2 in dimethylsulfoxide), only limited defluorination (1.5 e/molecule) is accessed. Governing factors for C−F bond redox are further investigated, including reactant concentration, discharge rate, temperature, and solvent properties (e.g. catholyte viscosity). A maximum of 8 e/C6F13I, or 8/13 available F, is accessible in the voltage range 2.8−1.9 V vs Li/Li+ with low reactant concentrations (0.1 M) and rates (20 μA cm−2). The data indicate that multiple handles exist to tailor extended C−F bond activation in these reactants. However, premature reaction termination caused by deactivation of intermediates, which is particularly exacerbated at higher concentrations and/or rates, is likely to be a persistent challenge for practical applications.

Funder

Lincoln Laboratory, Massachusetts Institute of Technology

Publisher

The Electrochemical Society

Subject

Materials Chemistry,Electrochemistry,Surfaces, Coatings and Films,Condensed Matter Physics,Renewable Energy, Sustainability and the Environment,Electronic, Optical and Magnetic Materials

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3